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Chapter 4
NOISE AND RANDOM SIGNALSNOISE AND RANDOM SIGNALS

One of the foremost-used Electronic Attack jamming methods is to emit radio noise

in the frequency band of a target receiver.  In an un-jammed environment, noise is

the fundamental limiting factor which prevents accurate reception of a radio signal.

Jammers often mimic noise signals because of the devastating impact of noise upon

radio receivers.  The purpose of this chapter is to gain an understanding of the

characteristics of noise and its effect upon reliable radio reception.  How jammers

create noise signals will be discussed in Chapter xxx.

We think of noise as a sound which is irritating to our sense of hearing.

Electrical noise had an original meaning of an electrical disturbance to a radio signal

which resulted in noise when we listened to the signal on a radio.  Electrical noise

is due to a corruption of the original signal.  With ensuing technological advances,

the term noise has come to represent all unintentional electrical signals which

undermine the reliable reception of transmitted signals.  In addition to the noise that

we hear on audio signals, noise is also evident as snow and specks on video TV

signals, and causes reception errors of digital signals such as digital voice modulation

and data links.  

As an introduction to the effects of radio noise, take the transmitted signal to

be a sinusoid as shown in the top plot of Figure 4-1.  The middle plot shows a noise

signal which will combine with the sinusoid. The received signal in the presence of

noise might appear as the sum of the two signals as shown in the bottom plot of the

figure.  Notice that the noise signal of the middle plot  is random and unpredictable.

Since the noise signal is random, we cannot predict its waveform.  Even if we know
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Figure 4-1.  Effects of noise on signal.  Top plot shows transmitted
sine wave, middle plot is additive noise, and bottom plot is the result
when the additive noise is combined with the sinusoid.

in advance what the frequency content of the noise signal is, the signal of interest

might be in the same band, preventing its removal by filtering.

Random signals cannot be described analytically, i.e., we cannot write a

mathematical expression for the noise voltage or current.  Instead, we evaluate

random signals statistically, and characterize them by their mean or average value,

standard deviation, bandwidth, etc.  This will be explored in Section 4.3.

Those signals which unintentionally corrupt the electrical signal but are

intentionally generated, are called interference, rather than noise (e.g., two radio

signals at the same frequency).  Jamming signals differ in that they are intentionally

generated with the intent to corrupt target signals.

Noise is of concern at the receiver rather than at the transmitter.  It is only

when the signal strength is relatively weak that the noise has enough power to

impact upon the signal.  It is at the receiver that the signal strength can have been

reduced to a vulnerable level.
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The noise which affects the received electrical signal can be generated in

nature or it can be man-made.  Examples of each are galactic noise, coming from the

sun and stars, and automobile ignition noise.  We also classify noise as either external

or internal to the receiver.  Those noise sources which are external to the equipment

cannot be eliminated or diminished.  The radio engineer and operator can at times

diminish the effects of external noise if they are aware of the frequency ranges where

the sources of external noise are present and if they can operate at other frequencies.

We will now discuss some common noise sources in order to gain an understanding

of noise characteristics.

4.1 EXTERNAL NOISE SOURCES

4.1.1 Atmospheric Noise

Lightning from thunderstorms contributes considerable amounts of noise at

frequencies from a few Hz up to about 20 MHz, with the noise amplitude decreasing

with increasing frequency.  HF radio signals can be severely degraded by atmospheric

noise, but it is usually not significant at VHF and higher frequencies.

Depending upon the severity of the storm and the frequency of occurrence,

a statistical mean can be generated to indicate the expected value of the noise signal.

There are world-wide maps of statistical modeling of this recurrence and severity of

lightning storms. 

4.1.2 Cosmic Noise

Cosmic noise has origins external to the terrestrial atmosphere.  Primary sources

include solar noise from the sun, galactic noise from the Milky Way, and other

discrete cosmic sources such as the intense star Cassiopeia A.

Noise from cosmic sources must pass through the earth's ionosphere and

atmosphere before being collected by radio reception antennas on the earth's surface.

The absorptive properties of the ionosphere prevent this noise from penetrating and

reaching the earth at frequencies below about 20 MHz.  Molecular absorption of the

atmosphere likewise prevents frequencies above about 10 GHz from reaching earth-



4-4

bound antennas.  Space-borne antennas, i.e., those mounted on satellites, above

about 1000 km do not benefit from these atmospheric absorption mechanisms so

receive noise over a much broader band of frequencies.  As with atmospheric noise,

the magnitude of cosmic noise decreases with frequency.

It should be noted that, in general, cosmic noise is not a problem for the

receiver if the antenna can be pointed away from the source of the noise.  However,

this is not always possible since the transmitted signal and the noise source may

originate in the same direction from the receiver.

4.1.3 Man-Made Noise

Noise from man-made sources also has the potential to degrade a received signal.

The frequencies over which these sources contribute noise varies from a few Hz up

to about a GHz.  The problems are more severe in urban and suburban areas because

of the relatively increased density of noise generators in these areas.  Examples of

man-made noise sources are ignition systems from gasoline engines, corona noise

from high-voltage power lines, gap noise from utility distribution lines, welders,

plastics industries (who use microwave energy to heat the plastics), and many other

devices and equipment in industry and within homes.

4.2 INTERNAL NOISE SOURCES

In electrical equipment noise is generated from several sources within the circuits

themselves.  Probably the most important of these, the one that communications

engineers spend the most time trying to control, is thermal noise, which is produced

by random motions of electrons.  Other types of noise in circuits are shot noise,

which is caused by random fluctuations in current flow, and flicker noise from

transistors.  Thermal noise is the standard against which all other noise types are

compared, so we will examine it in detail.



4-5

Vn ' 4RkTBn, (4-1)(4-1)

k ' 1.38 x 10&23 joules
Ekelvin

, (4-2)(4-2)

EK ' EC % 273. (4-3)(4-3)

4.2.1 Thermal Noise

When the atoms of any material receive energy in the form of heat, their electrons

become agitated and attempt to escape their bonds with their nuclei.  In a conducting

material, there are many free electrons which can move in any direction within the

material.  The direction which an individual electron moves is random.  Movement

of electrons constitutes a current flow, so that if a complete circuit is formed current

will flow randomly through the circuit.  The average current flow will be zero, since

current is just as probable to flow in one direction as another.

With a random current flow caused by applied thermal energy to a resistor,

a random voltage will be developed across the resistor.  It has been determined (see

for example Rosie, 1966) that the RMS value (see Section 2.6) of this noise voltage

across a resistor is given by

where the n subscript indicates noise, R is the resistance of the resistor, k is

Boltzmann's constant

T is the temperature in degrees kelvin, and Bn is the noise bandwidth.  The kelvin

temperature scale is related to the centigrade scale in that a one degree change

kelvin, K, is equivalent to one degree change centigrade, C, and

The kelvin scale is the absolute temperature scale–0 K is absolute zero, the absence

of all heat.

We can model the resistor, and its thermally controlled random voltage, as

shown in Figure 4-2.



4-6

Figure 4-2.  Resistor noise model.

Figure 4-3.  Resistor noise model connected to load resistor.

We know the RMS value of the noise voltage, Vn, given by Equation 4-1, and we also

know that its DC value is zero.  But what is the power available at the output

terminals of the modeled resistor shown in Figure 4-2?  To see how much power can

be delivered by the thermal noise of the resistor, let's connect a load resistor to the

output terminals as shown in Figure 4-3.  The maximum power transfer occurs when

the load resistance is equal to the source resistance.  If we define power available to

be equal to maximum power transfer, we can find the power available out of the

resistor by setting the load resistance equal to that of the resistor and solving for the

power.
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. (4-4)(4-4)
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, (4-6)(4-6)

h ' 6.63 × 10&34 joule @ seconds. (4-7)(4-7)

Pn ' I 2
n R '

4RkTBn

2R

2

R ' kTBn. (4-5)(4-5)

With RL = R, the current in the circuit is 

The power in the load from the noise is therefore

From this derivation we see that the power available is a function of the

bandwidth of the system to which the noise voltage is applied.  Implicit in this

statement is that the output frequencies from the thermal noise extend with equal

amplitude across all frequencies, i.e., the bandwidth of the noise source is infinite.

While is not true in an absolute sense, it is true in a practical sense as we will see in

the next paragraph.  We refer to noise which has a constant amplitude at all

frequencies as white noise.  This is in allusion to light, because white light contains

all colors (i.e., all frequencies of the color spectrum).

To see that thermal noise is white in a practical sense, we examine how

thermal power is distributed in frequency, i.e., the power spectral density (PSD) of

thermal noise.  From the work by Nyquist (1928) it has been determined that the

thermal noise PSD is given by

where h is Planck’s constant,

We see from Equation 4-6 that the noise power is indeed distributed in frequency,

but it is difficult to visualize this distribution from the equation.  If we set the
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Figure 4-4.  Plots of the components of Equation 4-6.  Shown is that
Noise PSD is constant with value kT until approximately 1012 Hz.

temperature to 290 K (room temperature), and plot SN versus f we obtain the result

shown in Figure 4-4 below.

There are three separate plots shown in the graph: those contributed by the

two separate terms of Equation 4-6 and their sum.  The curve which represents the

contribution from the second term of the equation, indicated as hf, does not

influence the PSD value until about 1012 Hz.  At about this same frequency, the

contribution from the first term diminishes, as shown in the plot labeled kT.  The

total PSD, shown in the line labeled kT + hf, is therefore approximately equal to the

first term for frequencies less than 1012 and to the second term for frequencies

greater.

With a limit of f = 1012 = 1000 GHz (well above RF), we conclude that we

are constrained to system operation where we must consider only the contributions

from the left term of Equation 4-6, where we see that the PSD frequency response

is flat, or white.  For RF we can then state the PSD as
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SNT
(f) '

hf

e hf/kT
& 1

watts
hertz

. (4-8)(4-8)
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x 2
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%

x 3
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% ... (4-9)(4-9)

SNT
(f) . hf

(1 % hf/kT) & 1
'

hf
hf/kT

' kT W/Hz. (4-10)(4-10)

PN ' kTB W. (4-11)(4-11)

N0 ' kT. (4-12)(4-12)

To see if this equation can be simplified, we note from Equation xxx that ex can be

represented by the series

If x is small then ex . 1 + x.  If we set x = hf/kT, then for a constant temperature its

only variable is f.  In this case, x will be small if f « kT/h.  At T = 290, for x to be

small we require that f « 6 × 1012, so for RF, we can approximate the exponential of

Equation 4-8 as 1 + hf/kT.  Making this substitution we have

We notice in Figure 4-4 above, that the flat portion of the PSD is indeed equal to kT.

For a given bandwidth, the power delivered will be the product of the PSD and B,

confirming Equation 4-5 at radio frequencies, i.e., the thermal power delivered by

resistive sources is given by kT multiplied by the bandwidth of the device measuring

the power (i.e., absorbing the power), or

At any given temperature T, kT is a constant.  This product has units of watts per

hertz and is given its own symbol, N0, i.e.,
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Pn ' kTBn ' (1.38 x x10 &23)(290)(103) ' 4 x 10&18 W. (4-13)(4-13)

As an example of computing thermal noise power, suppose that we wish to

find the power available to drive a power meter connected across a 100-ohm resistor.

Suppose that the power meter has a noise bandwidth of 1 kHz and the environment

is at room temperature.  Room temperature is usually taken as 290 degrees K.  From

Equation 4-11 the power available is

This is not a lot of power, so one might wonder why we are concerned with this

minuscule amount.  At the input of a receiver, the received signal power may have

this same order of magnitude.  In order to process the incoming signal, the

magnitude of the signal power must be on the order of at least ten times the

magnitude of the noise power.  We will explore this further when we look at

receivers in Chapter xxx.

4.2.2 Shot Noise

Another type of noise which is considered to be white is that of shot noise.  The

frequencies observed in this noise varies from a few Hz into the GHz region.  The

generation of shot noise is through a different physical mechanism than that of

thermal noise, however.

Shot noise is due to the random flow of electrons through devices such as

tubes, transistors, and diodes.  Since the current flow can be divided into discrete

charge-carrying events, i.e., through electron or hole flow, we can visualize that the

current crossing a semiconductor device junction is not constant.  The number of

holes or electrons crossing a junction at any given moment of time is random.  This

can be thought of as a series of pulses of charge crossing the boundary as a function

of time.

The name “shot noise” came from the vacuum tube days when the shot noise

was caused by the random bombardment of the anode by electrons, as if they were

shots fired from a shotgun.
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4.2.3 Flicker Noise

At low frequencies the internal receiver noise power is greater than that expected

from the combination of thermal and shot noise.  The cause of this additional noise

is controversial, but it is universally called flicker noise.  It is thought to originate due

to imperfections in the lattice structure of semiconductors such as diodes and

transistors.

This low frequency flicker noise is not white.  Its power level falls off with

increasing frequency.  It is observed that flicker noise PSD is inversely proportional

to frequency, i.e., SN ~ 1/f.  For this reason flicker noise is often called 1/f noise. 

4.34.3 RANDOM SIGNALS AND PROBABILITYRANDOM SIGNALS AND PROBABILITY

The characteristics pertaining to the thermally generated white noise signals

described in Section 4.2 consist of the average value, RMS value, and PSD, but

nothing else.  While these values are useful, other details such as ranges of

instantaneous values are not known.  Additionally, other types of noise, such as those

described in Section 4.1, are not necessarily white with a constant-valued PSD, nor

have we developed a systematic method to determine these important parameters

for an arbitrary random noise signal.

Since random signals cannot be described by analytic expressions, we must

use other methods to characterize them.  The branch of mathematics ready-made to

describe random signals is that of probability theory.  Using statistical methods we

will be able to ascertain signal characteristics such as the average, standard

deviation, probability of a given voltage level, and PSD.  These elements of the noise

signal will be useful is determining the magnitude of the deleterious effects of a

particular noise signal against an individual radio receiver.

4.3.14.3.1 Elementary Probability TheoryElementary Probability Theory

The field of probability theory is vast and complex.  A description of this entire field

is beyond the purpose and scope of this exposition.  Instead, a few important
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P{event} '
lim
N64

Nevent

N
. (4-14)(4-14)

concepts which meet our requirements will be illustrated and quantified.  The first

of these concepts is the probability that a particular event will occur.

4.3.1.1 Event Probability

Most of us have a rudimentary understanding of the concept of probability.  For

example, it is commonly understood that if a coin is tossed, it is equally probable that

a heads or a tails will appear.  In quantified terms, the probability is 50% or 0.5 for

each.  For purposes of discussing probability, the tossing of a coin is called an

experiment and the result is an event.  Another experiment is the drawing of a card

at random from a deck.  Since each card has the same probability of being drawn, the

probability of the event of drawing, say, the 3 of clubs is 1/52, the same as any other

card.

The most intuitive description of event probability is that of relative frequency

of occurrence.  Suppose several separate events can occur, but not simultaneously,

as the result of an experiment.  An example would be that one and only one of the

six sides of each die can appear when a pair of dice is thrown.  The number that

appears is the event and the tossing of dice is the experiment.  We can call the list

of possible events A, B, C, ....  For a die an A would correspond to a one, B to a two,

and so on.  Suppose further that N experiments are performed and the ensuing

events are noted and recorded.  The number of times events A, B, ... occur can be

counted and recorded as NA, NB, ... which can be used to determine the frequency of

occurrence.

If N is large (for theoretical purposes we let N 6 4), the probability of a

particular event is given by the number of times the particular event occurs divided

by the number of experiments, i.e., for the probability of, say, event C occurring can

be found as NC/N.  This is the relative frequency of event C.  Calling the probability

of a particular event P, we find that
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It is seen that probability is always a number between zero and one.  For the die, the

probability of getting a 3 is the same as getting any of the other numbers 1, 2, 4, 5,

or 6, which is 1/6.  For shorthand, the probability notation can be stated as P{1} =

P{2} = P{3} = P{4} = P{5} = P{6} = 1/6.  However the probability of getting a

7 is zero, the impossible event.  The probability of getting a 1 or a 5 is P{1 + 5} =

1/3 where “+” signifies “or”.  The probability of getting a 1, 2, 3, 4, 5 or a 6 is P{1

+ 2 + 3 +4 + 5 + 6} = 1, the certain event.

For the numbers on the die, each is equally likely or probable to appear.

Another example will show that equal event probability is not always the case.

Suppose a bag has 10 coins: 2 half-dollars, 5 quarters, 2 dimes, and a nickel.  If we

were to set up an experiment where one coin was picked at random from the bag,

what is the probability of drawing a coin of a given value?  Using Equation 4-14 the

probabilities for the different coins are P{50¢} = 0.2, P{25¢} = 0.5, P{10¢} = 0.2,

and P{5¢} = 0.1.

Probability is a measure of how likely an event is to occur.  Its use can be quite

useful in determining the likelihood of a particular random event.  Often it is desired

to determine the probability of a range of events occurring.  For this it is more useful

to develop probability density.

4.3.1.2 Probability Density Function

In the above examples it was seen that the probabilities were distributed over

particular event values.  In the case of the dice, the probabilities were distributed

uniformly over the events while with the coins the distribution was not uniform but

favored the drawing of a quarter.  This distribution of probability is called probability

density.

To illustrate the usefulness of the concept of probability density suppose 1000

persons attending a ball game are picked at random and their heights measured to

the nearest 0.05 of a foot (6/10 of an inch).  Since the sample chosen to measure is

comprised by males, females, adults, and children, a wide range of measurements is

obtained.  The results of this experiment are plotted in Figure 4-5.  It is obvious from

the plot that the measured heights are random.  It is difficult (if not impossible) to
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Figure 4-5.  Plot of heights of 1000 people selected at random.

P{6 ft} '
N6 ft

N
'

18
1000

' 0.018. (4-15)(4-15)

determine the number of persons measured at a particular height from this plot.  A

more helpful method is to plot the data arranged by height instead of in the order

of selection.  A plot of the height data with the x-axis increasing by height of those

measured is shown in Figure 4-6.  We could more easily find the number of persons

of a particular height using this plot.  As an example say it is desired to know how

many persons measured 6 feet even.  From the plot we see that eighteen people

measured 6 feet.  

We can now find the probability that a person selected at random will

measure exactly six feet.  Using Equation 4-14, the probability is given by the relative

frequency of measuring six-foot individuals, i.e.,

Therefore, the probability of someone selected at random from this group of 1000

persons measuring six feet even, is 1.8%.
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Figure 4-6.  Number of persons measuring a given height, plotted by
height.

Now suppose that the probability of a range of heights is desired, say from 6.0

to 6.2 feet.  We can use the same plot and simply sum the contributions from those

heights, giving

It is apparent from Equations 4-14 – 4-16 and Figure 4-6 that the number of

occurrences plot can be transformed to a relative frequency/probability plot just by

dividing the number of occurrences by N.  Dividing the numbers of Figure 4-6 by

1000 yields the height probability plot of Figure 4-7.
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Figure 4-7.  Probability of selecting a person of a given height from
the group of 1000 persons.  A dashed gaussian curve is superimposed
over the probability lines.

Notice the smooth dashed line which traces out an approximation of the

envelope of the height probabilities in Figure 4-7.  This line could represent what

would be expected of the height probability distribution if an infinite number of

persons were measured and the data were not rounded off.  With N 6 4 and no

rounding, any and all height values could be measured between the shortest and

tallest individuals; the probability curve would become continuous with an infinite

number of points between the shortest and tallest heights.  With an infinite number

of points, the application of Equation 4-14 results in a probability of zero for any

given height.  

Although it appears that the dashed line was drawn to fit the data, actually

it is the other way around.  The curved line represents a probability distribution

known as “normal” or “gaussian” probability density function (pdf).  The reason that

the height probabilities match the gaussian curve so well is that the height data is

distributed normally or gaussian.
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Figure 4-8.  Thermal noise relative frequency plot with gaussian pdf
overlaid.

The gaussian pdf is the most prevalent, and therefore the most important,

probability distribution found in nature.  For example, if we plot the thermal noise

data from the middle plot of Figure 4-1 as a relative frequency, as shown in Figure

4-8 with the gaussian pdf overlaid, we see that thermally-generated noise has a

probability density function that is also normal or gaussian.

It is seen that if it is known in advance how the noise voltage is distributed,

the pdf can be used to predict the noise voltage probability.  If the pdf is a

continuous function, integration must be used vice summation as in Equation 4-16

to compute probability over a range.  In Section 4.4 we will describe mathematically

the gaussian and several other probability density functions.  But before we can

understand those descriptions we must first discuss averages and signal spread.
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average ¢'(50 % 50 % 25 % 25 % 25 % 25 % 25 % 10 % 10 % 5)/10
' 25. (4-17)(4-17)

average'50¢ @ P{50¢} % 25¢ @ P{25¢} % 10¢ @ P{10¢} % 5¢ @ P{5¢}

' 50¢ @ 0.2 % 25¢ @ 0.5 % 10¢ @ 0.2 % 5¢ @ 0.1

' 10¢ % 12.5¢ % 2¢ % 0.5¢ ' 25¢,

(4-18)(4-18)

4.3.24.3.2 Statistical Mean, Expected Value, Variance, and Standard DeviationStatistical Mean, Expected Value, Variance, and Standard Deviation

Since random signals cannot be described analytically we use statistical measures to

characterize them.  A notation we will adopt is to use a capital letter to represent a

random signal, e.g., X, while any particular value found from that random signal will

be represented by its lower case, i.e., x.  This will become clear as we use this

notation in the following passages.

4.3.2.1 Statistical Mean

The first of these measures we will discuss is that of the statistical mean or average.

Most of us have an intuitive feel for the concept of averages, which should facilitate

this current discussion that we begin with an example.

In Section 4.3.1.1 we discussed a bag which contained 2 half-dollars, 5

quarters, 2 dimes, and a nickel.  The average value of the coins can be found by

summing the coin values and dividing by the number of coins, i.e.,

Recall that the probabilities for the different coins are P{50¢} = 0.2, P{25¢} = 0.5,

P{10¢} = 0.2, and P{5¢} = 0.1.  We can use these probability values to develop a

easier method to find the average.  Since the probabilities represent the relative

frequency of occurrence, the dividing by the number of coins and the summing of

multiple coins of the same value can be eliminated.  Instead, we can sum each coin

value multiplied by its probability to find the average, 

just as before.
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µ ' mean(X) ' j
N

n'1

xn P{xn}, (4-19)(4-19)

µ ' mean(X) ' m
4

&4
x f(x) dx. (4-20)(4-20)

As mentioned we use the terms average and mean interchangeably; we give

this operation the symbol µ.  If we are interested in finding the mean of random

signal X, then µ = mean(X).  In this example the collection of coins is X while an

individual coin value is x.  With this notation, we can generalize the results of

Equation 4-18 as

where N is the number of possible outcomes and xn is a particular outcome.  (In this

example N = 4 and the outcomes are x = 5¢, 10¢, 25¢ or 50¢.) 

In Section 4.3.1.2 we introduced the probability density function which we

saw was a continuous function.  Since it is continuous, the probability of any given

outcome is zero so that Equation 4-19 will not give satisfactory results for the pdf.

But, since the function is continuous we recognize that the summation becomes an

integration.  Calling the probability of any given x-value f(x) (i.e., f(x) = P{x}), for

a continuous random signal, Equation 4-19 becomes

In the next section we will see that the mean or average value is a special case

of the expected value.

4.3.2.2 Expected Value

One way of conceptualizing the expected value is to apply the literal meaning.  For

example, if one coin is drawn at random from the bag described above, what coin

value is expected?  It should be clear that one would expect to draw a quarter from

the bag since its drawing has the highest probability.  However, this definition of the

expected value is misleading because the expected value does not always coincide
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Figure 4-9.  Center of mass centered between two equal
masses.

with the value of highest probability.  In fact, the expected value need not be

contained in X.

A better way to envision the expected value is that it represents the “center

of mass” of the x values.  This alludes to this same concept in classical physics which

we will review for clarity.  Take for discussion two masses at opposite ends of a

children’s teeter-totter.   Assume the masses are equal, i.e., they have the same

weight.  The center of mass of this system is easily seen to be at the center of the

system–at the fulcrum.  This is shown in graphical form in Figure 4-9 where we have

arbitrarily placed the masses at X positions of 2 and 8.  The center of mass can be

seen to be the point where the system is in balance (at position X = 5).  The point

of balance is the position where the torque (= weight times distance) to the left is

equal to the torque to the right.

Formalizing the center of mass mathematically, we find
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Figure 4-10.  Center of mas for three unequal masses.

where m1 and m2 are the two masses and x1 and x2 are their positions.  For the

example shown in Figure 4-9 m1 = m2 = m, x1 = 2, and x2 = 8, giving

which agrees with the graphical solution.

Now suppose we have three masses, as shown in Figure 4-10, with values m1

= 6 located at position 1 (x1 = 1), m2 = 2 with x2 = 3, and m3 = 1 with x3 = 6.

Extending Equation 4-22 for three masses, the center of mass is found as
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center of mass ' j
N

n'1

xn P(xn). (4-26)(4-26)

E[X] ' j
N

n'1

xn P{xn}. (4-27)(4-27)

Generalizing the foregoing results, the center of mass for an arbitrary number

of masses can be seen to be

where N is the number of and M is the sum of the masses.  The individual masses can

be divided by the sum of the masses individually so that

If we define the normalized poundage at xn as P(xn) = mn/M (a number less than or

equal to one), we can rewrite Equation 4-25 as

At the outset of this section we stated that expected value of a random signal

is analogous to that of center of mass.  Now that we have an understanding of center

of mass we see that it is the value of x where we would expect to find all the mass

of the system if they were all collocated and the balance of the system unchanged.

To put this into the context of probability, let’s again use Figure 4-10 but substitute

probability for the normalized poundage, P(xn).  Calling the center of mass for

probability the expected value of X, Equation 4-26 becomes
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Figure 4-11.  Sine wave + DC over one period.

Now compare Equation 4-27 with Equation 4-19 where it is seen that the

expected value of X is its statistical mean, i.e.,

Note that two ways are used to denote the expected value of X: E[X] and X.

For continuous random signals the expectation summation becomes

integration so that

It is instructive at this point to relate the expected or mean value of X to that

of the time average of a time-varying signal.  For comparison let

shown in Figure 4-11.  This signal is seen to be a sine wave, one period in duration,
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riding on a DC value of A.  The time average of x(t) is found using Equation 2-8 as

The time average of a sinusoid is always its DC value.

Now let’s use Equation 4-29 to find the expected value of this waveform.

Since the integration is over dx, the range of integration will be from the minimum

value of x to its maximum.  This range is seen to be from A – 1 to A + 1.  The

probability density of this waveform can be shown to be (see Gupta, for example)

The expected value of this sinusoid is then

the same value as the time average found in Equation 4-31.

From this example we discern that the expected value of a time-varying signal,

known as the statistical mean, produces the same result as the time average, which

we know as the DC value.  In other words, µ = DC for a time-varying signal.

However, this is strictly true only for a class of signals called “ergodic”.  Unless

otherwise stated we will assume all signals to be ergodic.  Now we will see how

extending the concept of expected value produces another important result.

We saw in Equation 4-29 that the expected value of X is found by multiplying

the values of X (that is, the  x values), by the probability of each of these values of

x and summing the results.  Expectation is not limited to just the center of mass of

X.  For example, we can find the expected value of X2.  This is found by squaring the

values of x, multiplying the results by the probabilities of the individual values of x,

and summing the outcome, i.e.,
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P ' E[X 2]. (4-37)(4-37)

E[g(X)] ' m
4

&4
g(x) f(x) dx. (4-38)(4-38)

To see the physical significance of this expectation, again take x(t) as defined

in Equation 4-30 and pictured in Figure 4-11.  The average power of x(t) is found

from Equation 2-9 as

Now, application of Equation 4-34 to find the expected value of X2 of the signal of

Equation 4-30 gives

the same result as from the time average of x2 in Equation 4-35.  

This example shows that the expected value of X2 has the physical significance

of being the average power of an ergodic time varying signal, i.e., 

The last point to make in this section is that to generalize the mathematics of

the expectation operator, the expected value of a function involving X, e.g., g(X), can

be found as

4.3.2.2 Variance and Standard Deviation

With expectation we learned in the last section that the central weighted value of a

random signal can be determined.  This value is known as the statistical mean or

average of the signal.  While this is a useful and necessary component to be known
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of a random signal, it is not sufficient to adequately characterize it.  In particular it

does not quantify signal variability.  In this section we will extend the use of E[X2]

to quantitatively define signal scatter or variation.

Suppose three pieces of paper with the numbers 9, 10, and 11 are placed into

a hat and drawn at random.  The drawing from the hat produces random numbers

and we can call the random number set X1 so that  X1 = {9, 10, 11}.  Since each

number is equally likely, the probability of each is 1/3.  From Equation 4-27 the

expected value of X1 is  

Now suppose another three pieces of paper with numbers 5, 10, and 15 are placed

into another hat and drawn at random.  Calling this set X2 = {5, 10, 15} we find

the same as the first set.  We see that even though the sets have the same expected

value, they are not equivalent.  In particular, they differ in their variability, i.e., the

second set is scattered over a greater range.

One way to quantify variability is to square the random signal and find the

expected value of the result, i.e., find E[g(X)] where g(X) = X2.  For the first set we

have

Similarly for the second set



4-27

EX 2
3 ' j

3

n'1

x3n

2 P{x3n
}' 1092(1/3) % 1102(1/3) % 1112(1/3) ' 12,101 (4-43)(4-43)

E (X1 & µ1)
2 ' j

3

n'1

(x1n
& µ1)

2 P{x1n
}

' (9&10)2(1/3) % (10&10)2(1/3) % (11&10)2(1/3) ' 2/3,

(4-44)(4-44)

E (X3 & µ3)
2 ' j

3

n'1

(x3n
& µ3)

2 P{x3n
}

' (109&110)2(1/3) % (110&110)2(1/3) % (111&110)2(1/3) ' 2/3,

(4-45)(4-45)

So, it is seen that the greater variability of the second signal is confirmed by the

expected value of the squares.

Now let a third hat contain paper pieces with the numbers 109, 110, and 111.

It is seen that although the expected value (110) differs from the first set, its range

of values is identical, that is, the value spread is over three consecutive numbers for

both sets.  Ideally, a measure of variability would return the same value for this set

as for the first set.  However, we find

which is nowhere near the same as the expectation of the square of the first set.

The problem is that since the means are not the same squaring the signals

squares the means as well.  The solution is to subtract off the mean prior to squaring

and then find the expectation.  For the first set this results in

a much smaller variability measure than that produced by Equation 4-41.  Now

subtracting the mean from the third set, squaring, and finding expectation yields

exactly the same as set 1.

This exercise has shown that a consistent, useful measure of variability can be

found by subtracting the mean from a random signal, squaring it, and finding the
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standard deviation ' F ' F2 ' E[(X & µ)2]. (4-50)(4-50)

expectation of the result.  This operation proves so useful and valuable it is given its

own name and symbol, namely

Since (X – µ)2 = X2 – 2µX + µ2 and E[aX + b] = aE[X] + b, where a and b are

constants, we find also that

This result is obtained by observing that E[X] = µ and E[µ2] = µ2.  Notice the

difference between Equation 4-37 and the outcome of Equation 4-47.  In 4-37 we

found that E[X2] is the total power, both AC and DC.  However, for the variance, F2

is the total power minus the DC power, leaving only the AC power, i.e.,

Note that if µ = 0, the DC power is zero and F2 represents the total power.

For continuous random signals, using Equation 4-38 the variance is found as

If the signal of interest is given in volts, then the units of variance are volts2.

It is often more convenient to work with the original units, that is volts, so the square

root of the variance is commonly used instead, called the standard deviation.

Therefore,
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Figure 4-12.  Values of the elements of X1 on top and X2 below.

But, since F2 represents AC power, as given by Equation 4-48, F gives the RMS

voltage of the time-varying signal.

We now have developed two tools which allow us to describe random signals,

namely the expected value and variance (or equivalently the standard deviation).

However, other than a measure of variability, we have no way of describing how the

voltage (or current) of the random signal is distributed.  To see why this is necessary

consider one last example.  Take two 18-element random signals X1 = {1, 7, 8, 8, 9,

9, 9, 10, 10, 10, 10, 11, 11, 11, 12, 12, 13, 19} and X2 = {5, 6, 6, 6, 7, 7, 7, 9, 10,

10, 11, 13, 13, 13, 14, 14, 14, 15}, shown plotted in Figure 4-12 with X1 in the upper

plot and X2 in the lower.  Application of Equations 4-27 and 4-46 reveals that µ = 10

and F 2 = 11.84 for both X1 and X2.  From the plots it is obvious that the two signals

are not identical, even though their statistical descriptors are.  The obvious difference

is that the two signals are distributed differently, as shown in Figure 4-13.  With a

plot of the distribution it is possible to determine the range of values, concentration

of energy, etc.  This concept was also presented when we introduced probability

density functions in Section 4.3.1.2.  We will now examine probability density

functions analytically using the tools we developed in this section.
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Figure 4-13.  Distribution of element values of Figure 4-12.

4.4 SOME PROBABILITY DISTRIBUTIONS

The concept of the probability density function was introduced in Section 4.3.1.2.

Along with µ and F described in the last section, the pdf can be used to distinguish

a random signal’s statistical characteristics.  Its primary utility is in demarcating the

range of values (e.g., volts) over which a random signal can be found and the

concentrations of energy within that range.  By summing up the concentrations of

energy over a range of interest, the probability of the signal’s value falling within that

range of interest can be determined. 

As an example of using a pdf to find probability suppose we wish to determine

if a gallon of gas pumped at a gas station is actually a gallon.  And, if it is not, what

are the range of values we might find and the probability of a given range of values.

To set up the problem, let g represent the actual amount of gas pumped at a station

with the gas pump reading exactly 1.0 gallon.  Since we wish to determine how far

this measurement differs from 1.0 gallon, let the difference be x = |g - 1|.  We
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Figure 4-14.  Probability density function of difference between actual
and measured gallon of gas.

include the absolute signs since we are not concerned with whether the error reading

is high or low, just by how much it differs from exactly one gallon.

Say it is known that the probability density function of how the measurement

differs from the reading is known as

This pdf is shown plotted in Figure 4-14, where it is seen that the concentration of

measurements is greatest at x = 0 (indicating no difference between measurement

and reading), and decreasing with greater values of x.  The range of measurement

differences is seen to vary from 0 to about 0.55 gallons.
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Since x is the actual measurement error values, we can refer to the random

variable associated with the experiment as X.  If we wish to know the probability of

a measurement error being less than some value of x, i.e., P{X # x}, we must sum all

the contributions from the density function at values less than or equal to the chosen

value of x.  Since this pdf is a continuous function, this summation is an integration.

This probability is computed so frequently that it has its own name, the cumulative

distribution function (cdf) with symbol F(x).  In mathematical terms this is given as

This equation can be used if, for example, we wished to know the probability that

the measurement would differ by 0.3 gallon or less, we set x = 0.3 and find

The lower limit of integration is zero since the pdf is zero for x < 0.  If we instead

wanted the probability that the measurement error exceeded some value x, it is seen

that

We could use this equation to find the probability that the measurement is in error

by more than 0.5 gallon as

Finally, to find the probability that the error value falls between two values x1 and

x2, where x1 < x2, it follows that
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The expected value of the error measurement is found using Equation 4-29

as

This result indicates that the expected error in measurement is 0.1 gallon for every

gallon pumped.  Using Equations 4-47 and 4-50, the standard deviation is also found

to be 0.1 gallon.

Now that the relationship between probability, the cdf, and the pdf has been

illustrated, we will now describe some probability density functions that we will find

useful in studying noise effects on receiver systems.

4.4.1 Uniform Probability Density

The uniform probability has a constant or flat value over its range.  The probability

of an interval within that range is proportional to the interval length.  This implies

that all selections from the range are equally probable.  Think or a roulette wheel.

After it is spun the pointer is just as likely to stop on one number as any other.  The

probability density function is given as

and zero otherwise, as shown plotted in Figure 4-15.  Using Equation 4-52, the cdf

is found as

The mean and variance of the uniform density can by found by application of

Equations 4-29 and 4-49 to find
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Figure 4-15.  Uniform probability density function.

The primary uses of the uniform distribution are first to determine the

probability of a random phase of a signal, where it is usually assumed that a random

phase has a uniform distribution over –B/2 to B/2 or from 0 to 2B, and second as a

generating function for other pdfs in simulation.

4.4.2 Normal or Gaussian Probability Density

The most used and therefore most important pdf is the Gaussian, first advanced by

Abraham Demoivre in 1733.  Many naturally occurring phenomena, including

thermal noise, are very accurately modeled with the Gaussian pdf.  Its modeling

equation with mean µ and variance F2 is



4-35

-1 -0.5 0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

f(
x)

2 σ

Figure 4-16.  Gaussian pdf with µ = 1 and F = 0.5.

A plot of the gaussian pdf with µ = 1 and F = 0.5 is shown in Figure 4-16.  Note that

the Gaussian pdf represents the well-known “bell curve”.

Recall from Equation 4-56 that to determine probability the pdf must be

integrated to find the cdf.  Unfortunately Equation 4-61 cannot be integrated in

closed form to give an equation for F(x).  Therefore, numerical integration must be

used to find the required probability. 

To preclude the need for numerical integration, tables can be created and

consulted when necessary for probability computations.  However, to allow for all

conceivable values of µ and F, the number of tables required would be prohibitive.

Therefore, a “standard” Gaussian density is used where µ = 0 and F = 1.  Integration

of the standard Gaussian density as per Equation 4-61 is given the symbol M(x), and
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Tables of M(x) are found in many texts on probability or statistics.  For arbitrary

values of µ and F, these tables can be used with a simple change of variables to find

the desired cdf of

Some texts list tabulated values of Q rather than M where

Since the total probability is equal to 1 it is seen that 

Other references (particularly mathematics books) tabulate values of the error

function, defined as

The complementary error function is the integral from x to 4 so is related to the error

function as erfc(x) = 1 – erf(x).  The error function can be associated with the Q

function using
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4.4.3 Log-Normal Probability Density

The log-normal distribution of x is similar to the normal distribution of x with the

difference being that here the logarithm of x is normally distributed.  We will use the

natural logarithm of x, ln(x), although logarithms of any base could be used.  

If we set Y = ln X, then it is readily seen that Y is a Gaussian random variable

with mean µY and variance FY
2.  A pdf transformation from Y to X results in

A plot of the log-normal pdf is shown in Figure 4-17 with µY = 1 and FY
2 = 0.5.
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Figure 4-17.  Log-normal pdf with µY = 1 and FY
2 = 0.5.

The cdf cannot be found in closed form, but standard Gaussian tables can be

used with the substitution of ln(x) for x, 

The mean and variance are found (after some careful calculations) as

4.4.4 Gamma Probability Density
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The gamma density is a versatile pdf which finds widespread use in predicting

message length, message arrival times, reliability, and failure rates.  Its definition

includes the gamma function, from which it gets its name.  The pdf, with parameters

" > 0 and $ > 0, is

where the gamma function '(") is defined as

A plot of the gamma pdf is shown in Figure 4-18 with several values of " and $.

As seen in the plot, the pdf shapes can change so much as a function of the

parameters that they appear to have been created by different functions.  Because

of the unique attributes of individual pdf shapes, several have assumed names of

their own.  For example, for " =1 the gamma pdf is known as an exponential, used

widely for time-of-arrival studies.  Extending " to include all (positive) integers the

gamma is known as an erlang, which finds use by actuaries and in predicting mean

time between failures.  One other common pdf, often used in meteorology, is chi-

squared.  It is formed by setting " = n/2 and $ = 2 where n is a positive integer.

In general, (except for the exponential pdf) the cdf cannot be determined in

closed form;  numerical integration must be used. The gamma mean and variance are
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Figure 4-18.  Gamma pdf with three different parameter sets.

4.4.5 Weibull Probability Density

The final pdf we will examine is the Weibull, sometimes called a “power Rayleigh”.

Like the gamma, it is also used for failure rate prediction, but it is considered easier

to use since the gamma function is not included and it can be integrated in closed

form.  Its pdf with parameters " and $ is given by

The cdf is easily found to be

Its mean and variance are related to the gamma function, however.  They are given

by
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µ ' $' 1 %
1
"

and F2 ' $2 ' 1 %
2
"

& '2 1 %
1
"

. (4-76)(4-76)
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Figure 4-19.  Weibull pdf with three different parameter sets.

The Weibull pdf is shown plotted in Figure 4-19 for several parameter values.

Notice the shape change for the different parameters.  Just as with the gamma, when

" = 1 the function reduces to the exponential distribution.  For the case when " =2,

the Weibull is called a Rayleigh.  The Rayleigh is commonly used for miss distance

prediction of bombs, bullets, arrows, darts, etc., and narrow-band noise envelope.

4.5 SIMULATED NOISE GENERATION

In the last section we examined several probability density functions which are

mathematical models of random events occurring in nature.  Our purpose in this
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if x F(x), then F(x) x. (4-77)(4-77)

section is to simulate noise signals whose voltage amplitudes are distributed

according to a chosen pdf.  We will use the noise signals developed in this section to

represent jamming signals used against radio receiving systems in Chapters xxx.

4.5.1 Noise Generated from Probability Density Function

The probability distributions discussed in Section 4.4 can be used to generate noise

signals whose distributions are representative of the pdfs that created them.  In other

words, a signal created from a normal pdf, for example, will have a normal

distribution while one created from a gamma pdf will have a gamma distribution.

The procedure to find the values of a noise signal is the inverse of finding the

probability of x given x, that is to find F(x) knowing x.  In this inverse case we

assume we know F(x) and from that we will determine x.  Mathematically, it is seen

that x = F-1[F(x)].  As an example suppose F(x) = x2, then F-1(y) = y1/2.  If follows

that F-1[F(x)] = F-1[x2] = [x2]1/2 = x.  The problem becomes one of finding F-1, the

inverse of F.  In some cases it is analytic and simple, in others we will employ the

computational power of the computer to help determine the inverse of F.

If we are given a value of F(x) and the inverse of F, we can determine the x

value from which the F(x) value came.  In other words  

        F            F-1

      6    6
Now, we assume that all values of F(x) are equally likely, that is the values of F(x)

are themselves uniformly distributed.  Then if we generate a uniformly distributed

random signal (available in many computer applications) and let those values

represent the values of F(x), application of F-1 to those values will result in a random

signal which is randomly distributed the same as F(x).

As an illustration suppose f is Weibull distributed with " = $ = 2 so that

.  Solving for x we find   If we nowF ' 1 & e &(x/2)2
F &1 ' 2 [&ln(1 & F)]1/2.

generate a uniformly distributed signal with elements of say, 0.6154, 0.7919,
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Figure 4-20.  Four probability density functions and their associated
noise signals.

0.9218, 0.7382, and 0.1763, the corresponding Weibull random signal will have

elements of  1.9551, 2.5059, 3.1929, 2.3153,and 0.8807.

Figure 4-20 shows examples of simulated noise generated from normal, log-

normal, gamma, and Weibull probability distributions.  These pdfs are shown in the

four left hand plots.  All the distributions shown have the same mean and variance

of 2.5 and 4 respectively.  The right hand plots show the time domain signals created

from their adjacent pdfs.  These signals appear similar because they were all created

using the same uniform random signal which was transformed by F-1(x) for each

distribution.  There are observable differences among them however.  For example,

the signal generated from the normal pdf spends most of the time near and is

balanced around the mean while the others are concentrated at different locations

and are not balanced.
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Figure 4-21.  Gaussian noise, shown on top, and after passing through
a 1/f filter, shown on the bottom.

4.5.2 Simulated Flicker Noise

In Section 4.2.3 we introduced flicker noise and discussed that its PSD diminished

as 1/f.  We can simulate flicker noise by starting with any white noise source (e.g.,

thermal noise) and passing it through a filter which has a frequency response of 1/f.

As an example, suppose we have the white noise shown in the top plot of

Figure 4-20 above.  If we pass this noise signal through a filter with a frequency

response of 1/f we get the new noise signal shown in Figure 4-21, where the original

signal is shown on top and the filtered signal on bottom.  Notice that the high

frequency components of the original signal have been removed by filtering.  In

Section 4.6 we will confirm this observation in the frequency domain.

4.5.3 Simulated Impulsive Noise

The final noise we wish to simulate is impulsive noise.  Atmospheric noise and a

number of man-made noises are impulsive.  Being impulsive this type noise arrives
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Figure 4-22.  Simulated impulsive noise with interarrival times
gamma and amplitudes Weibull distributed.  The top plot represents
a purely impulsive pulse shape, the middle an exponential impulse,
and the bottom an exponential impulse with accompanying sinusoid.

in bursts or pulses rather than continuously as depicted in the previous examples.

For this reason it cannot be modeled with the continuous probability density

functions.  Instead, we must use other models.

  First, we observe that the time between bursts or pulses, called interarrival

time, is random.  Interarrival times are best predicted by gamma or weibull

distributions.  Second, the magnitude and phase of the arriving burst is also random,

with any of the probability distributions probably good models.   Finally, the pulse

can take any shape  we wish to ascribe to it.  Jeruchim, et al. suggest using a gamma

distribution for interarrival times, a log-normal or a Weibull distribution for pulse

amplitude, a uniform distribution for pulse phase, and a decaying exponential with

or without accompanying sinusoid for pulse shape.   Figure 4-22 depicts simulated

impulsive noise with gamma interarrival times and Weibull amplitudes.  The top plot

shows an impulsive pulse shape, the middle an exponential impulse, and the bottom

represents an exponential impulse with accompanying sinusoid.
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E ' m
4

&4
x 2(t) dt. (4-78)(4-78)

E ' m
4

&4
x 2(t) dt ' m

4

&4
*X(f)*2 df, (4-79)(4-79)

As noted in Sections 4.1 and 4.2, radio receivers at VHF and above are

generally most susceptible to thermal (gaussian) noise.  This means that most

receivers are designed to operate optimally in the presence of thermal noise,

disregarding other noise types.  Impulsive noise can be a formidable jamming

waveform against such receivers as we will see in Chapter xxx.

4.6 NOISE POWER SPECTRAL DENSITY

In Section 3.6 we found the power spectral density (i.e., the distribution of power

in frequency) of deterministic signals and in Section 4.2.1 we determined the PSD

for thermal white noise.  Here we will discern the general-case PSD for noise or

random signals, irrespective of their sources or pdfs. 

For a time-domain signal, whether deterministic or random, the total energy

in the signal is stated in Equation 2-7, repeated here as

In Section C.5 it is shown that the total energy for the same signal, but represented

in the frequency domain, is

where X(f) is the Fourier transform of x(t) and |X(f)|2 is the square of the magnitude

of X(f).

The average power of x(t) is found using Equation 2-9, and combined with

Equation 4-79, we have
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P ' lim
T64

1
2T m

T

&T
x 2(t)dt ' lim

T64

1
2T m

T

&T
*X(f)*2 df

'

4

&4

lim
T64

1
2T

*X(f)*2 df.

(4-80)(4-80)

P '

4

&4

lim
T64

1
2T

*X(f)*2 df ' m
4

&4
Sx(f) df, (4-81)(4-81)

Sx(f) ' lim
T64

1
2T

*X(f)*2. (4-82)(4-82)

Comparing Equations 4-80 and 3-27 illustrates that the average power is

so that the power spectral density of x(t) is given by

The results obtained here evidence that for an arbitrary signal x(t) within a

time interval –T # t # T, the power spectral density can be approximated by

calculating the Fourier transform of x(t), squaring the magnitude of the result, and

dividing by the length of the interval.  As T approaches infinity, the results become

exact rather than an approximation.

As an illustration of varying the length of the interval, we can compute the

PSD of a thermally generated signal.  We know that a thermal source produces white

noise so we expect its PSD to be flat or constant across the frequency spectrum.

Figure 4-23 shows the results of these computations where we vary the length of the

interval I over which the computations are based.  In the top plot the interval is 210,

in the center it is 215, and in the bottom plot it is 220.  It is easily seen that as the

interval increases in length, the more the PSD becomes flat.  In the limit, that is

when the interval length is infinity, the PSD for white noise becomes perfectly flat.

In Section 4.5.2 we discussed 1/f or pink noise and observed a time domain

representation of a pink noise signal which had been created by filtering a white
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Figure 4-24.  Pink noise PSD.
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Figure 4-23.  White noise PSDs for different interval lengths.
The length in the top plot is 210, middle 215, and the bottom 220.

noise signal. The PSD of this pink noise signal is shown in Figure 4-24 where we see

how the power distribution differs from the white noise PSD.
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SNRdB ' 10 log(SNR). (4-83)(4-83)

Knowing how to obtain the PSD gives us the ability to find the average power

of a noise signal, by using Equation 4-81.  Assuming we already know the power

contained in a communications signal, we can find the ratio of the signal power to

noise power, known as the signal-to-noise ratio. 

 

4.7. SIGNAL-TO-NOISE RATIO

Whether we are concerned with analog or digital signals, the fundamental predictor

of signal quality at the receiver is the signal-to-noise ratio.  Therefore, in signal

reception analysis, it is mandatory to determine the signal-to-noise ratio.  (In Chapter

xxx we will modify this to signal-to-jammer ratio.)  The signal-to-noise ratio (SNR)

is the ratio of the signal power to the noise power and is a dimensionless number.

It is sometimes indicated in this form, but the most common expression of the SNR

is in decibels.  This is found in the usual way,

There are many locations within a receiver where the SNR can be found, and

although the values found are related they are not identical.  For example, the SNR

at the input of the receiver will be greater than at the input of the demodulator

because of added noise such as flicker and shot noise within the receiver.  This will

be discussed more fully in Chapter xxx where the relationship between received

signal quality and SNR will be elaborated.


